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ABSTRACT

Direct simulations of homogeneous turbulence have, in recent years, come into widespread

use for the evaluation of models for the pressure-strain correlation of turbulence. While work

in this area has been beneficial, the increasingly common practice of testing the slow and

rapid parts of these models separately in uniformly strained turbulent flows is shown in

this paper to be unsound. For such flows, the decomposition of models for the pressure-

strain correlation into slow and rapid parts is ambiguous. Consequently, when tested in

this manner, misleading conclusions can be drawn about the performance of pressure-strain

models. This point is amplified by illustrative calculations of homogeneous shear flow where

other pitfalls in the evaluation of models are also uncovered. More meaningful measures for

testing the performance of pressure-strain models in uniformly strained turbulent flows are

proposed and the implications for turbulence modeling are discussed.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the first and third authors were in residence at the Institute for Computer Applica-

tions in Science and Engineering (ICASE), NASA Langley Research Center, tIampton, VA 23665.
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1. INTRODUCTION .

Direct numerical simulations (DNS) of turbulent flows have provided a powerful new

tool for the testing and screening of turbulence models. Turbulence quantities that are not

directly measurable can now be computed accurately - for a variety of benchmark turbulent

flows - in far more detail than that which can be extrapolated from physical experiments.

The pressure-strain correlation, which plays a pivotal role in the formulation of Reynolds

stress transport models, represents a prime example where DNS data bases have provided a

wealth of interesting new information. 1 During the past decade - beginning perhaps, with

the work of Rogallo 2 - models for the pressure-strain correlation have been tested using

DNS data bases for homogeneous turbulent flows. In the most recent such work, it has

become a common practice to decompose models for the pressure strain correlation into

slow and rapid parts and to compare the model predictions for these parts separately with

DNS data bases, a-5 This approach seemed attractive since it would provide a gauge on the

performance of each part of a model for the pressure-strain correlation. Prior to the advent

of direct simulations of turbulence, such comparisons were not possible since the slow and

rapid parts of the pressure-strain correlation cannot be measured, even by indirect means.

However, in uniformly strained turbulent flows, this procedure can lead to misleading results.

The main purpose of the present paper is demonstrate this point along with other pitfalls in

the evaluation of models.

It will be shown that the decomposition of models for the pressure-strain correlation

into slow and rapid parts is ambiguous for uniformly strained turbulent flows where the

mean velocity gradients are constant. Hence, when the commonly assumed decomposition

is implemented and comparisons are made with DNS results, an overly pessimistic and

misleading assessment of the performance of a pressure-strain model can be arrived at. This

point is demonstrated theoretically and then is illustrated computationally by comparisons of

the predictions of three recent pressure-strain models (the models of Shih and Lumley, 6 Fu,

Launder and Tselepidakis 7 and Speziale, Sarkar and Gatski s) with the direct simulations

of Rogers, Moin and Reynolds 9 forhomogeneous shear flow. It will thus be argued that

in uniformly strained turbulent flows, models for the pressure-strain correlation should be

tested as a whole rather than tested in their slow and rapid parts. More objective alternative

means for doing so will be proposed. Of course, the slow and rapid parts of models for the

pressure-strain correlation can still be tested separately in the limit of relaxational turbulent

flows and in the rapid distortion limit, respectively. These issues will be discussed in detail

in the sections to follow ....



2. ANALYSIS OF THE PRESSURE-STRAIN CORRELATION

7

We will base our analysis on the incompressible Navier-Stokes equations

Ovi Ovi OP
-- = + vV2vi (1)

O--T+ vj Oxj Oxi

OU i - _ __o (2)
_2g i : .

where vi is tlie velocity vector, P is the kinematic pressure, and _, is the kinematic viscosity

of the fluid. The velocity and pressure are decomposed into ensemble mean and fluctuating

parts, respectively:

vi = Vi + ui, P=-fi+p. (3)

An evolution equation for the fluctuating velocity ui is obtained by subtracting the ensemble

mean of (1) from (1) itself to yield 1° ................
: : 2

o-7+ _J_j = -USOx, ujOx, Oxi+ "v=u'+ v_,(_--_) (4)

which is solved subject to the incompressibility constraint .... : : : :,

°_---z'= o. (5)
Oxi

We will restrict our analysis to homogeneous turbulence where we have

°-_---2(= aij(t) (6)
cgx j

uius = uiui(t).

Hence, for homogeneous turbulence, (4) reduces to the form

(7)

Oui Oui Oui

-Oi + Gjkzk -- usOxj Oxj
_ O.__p.p+ _,V=ui" (8)

-- -- Gijuj Oxl

By taking the divergence of (8), the pressure can be solved for, i.e.,

Otll

V2p = -2Gkz Oxk

OUk OUl

OXl OXk
(9)

which, in an unbounded domain, has the general solution

oO

'IIIP=47
--CO

1 (2Gkt OuTIx -x'l
(lo)



Consequently, (8) can be written as an integro-differential equation as follows:

Oui_._ - Oul Oul _ Gijttj -f- uV2ul+ = Ox----_

(11)
(X) $

- \ oxk Ox? Ox'k)
--00

When done in Fourier space, the process of obtaining Eq. (11) is equivalent to projecting

the pressure out of the problem, n

The fluctuating pressure is decomposed into slow and rapid parts, respectively, as

followsa2, la

p = pCS) + p(n) (12)

where the slow pressure p(S) and the rapid pressure p(n) are solutions of the Poisson equations

V2p(S) = Ouk Out
Ox, Ox--k (13)

_ ,..,, Ottl

V2p(R) =--Z_kt-_x k . (14)

For homogeneous turbulent flows, this decomposition is unique (for general inhomogeneous

turbulent flows it is not unique due to problems with the boundary conditions). By making

use of (12), the pressure-strain correlation can be decomposed into slow and rapid parts in

a straightforward manner:

P t, oxj + ox_) =pcs) \ozj + Ox_) +peR) \Oxj + ox_) (15)

or, equivalently,

IIij = II}]) + II}_ ) (16)

where Ilij denotes the pressure-strain correlation. Here, the slow and rapid parts of the

pressure-strain can be written exclusively in terms of the fluctuating velocity as follows:

1 _ 1 Ou_ Ou_ (Oui Ouj_ d3x. (17)HI?:-x-;/JJix-x.iOxrO: fox,÷Ox,i

__ I7I 1 Ou T (Ou_ OuS_n}f) = ak, Ix- x'l 0x; \0xj + Ox,)
dax .. (18)

As a direct consequence of (11), it follows that solutions of the Navier-Stokes equations

for the fluctuating velocity field ui in homogeneous turbulence are of the general form (see

Appendix A)

ui(x,t) = _[akl(t'); x,t], t' ¢ (O,t) (19)



where .%[ • ] denotes a functional (i.e., a quantity determined by the history of a function).

From (19), it is clear that any moments constructed from ui will be nonlinear functionaIs of

the history of Gkl(t'). More precisely, from (17)-(18) and (19) it follows that both Hlf ) and

III_ ) can depend nonlinearly on Gkt at retarded times as follows:

rI!7)(0= t1, t' (o,0

= [a,,(t'); 1]a,,(t),

where the correlation Mokz is defined by

Mijkt = Ix - x*l Ox*k \Oxj
--00

(20)

t' C (0, t) (21)

+ ox, ] e_x.. (22)

Here, H! s) and H!_ )_are _functions of time alone since we are considering homogeneous tur-

bulence for which an ensemble mean is assumed to be equivalent to a spatial average_'

In the standard models for (20)-(21) that have been used in the formulation of second-

order closures, explicit history effects have been neglected and the time dependence t has

been parameterized through u--7-_(t) and the dissipation rate e(t) - the only two turbulence

correlations that are typically generated in the solution of these models. With these two

assumptions, dimensional considerations and the fact that 1-IO is traceless then yields models

of the form 12-14

where

Oq-_k

IIij = eAij(b) + K.Miikt(b)Oxt
(23)

1
K = -_ (24)2u,u,

Oui Oui
e = _,__w (25)

Ox_ Oxj

tlitl j 1

bij -_- -_ - 5_ij (26)

are, respectively, the turbulent kinetic energy, the turbulent dissipation rate, and the

anisotropy tensor. Due to the way in which (23) was postulated, it has become common to

assume that models of this form can be decomposed into slow and rapid parts as follows:

H_ ) - _Ao(b ) (27)

ovk (28)

Certainly, (27)-(28) are consistent with the limits of relaxational and rapidly distorted tur-

bulent flows. More precisely, in the limit of a relaxational flow where for times t >_ 0, we set

Ogk/Oxl = 0, it follows that

n;j = 7)= (29)
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and in the rapid distortion limit whereat time t = 0 we let GI(o/eo _ oo, it follows that

for early elapsed times

IIij = n!n)= K.Mijkt(b)Ovk (30)
Oxt

given that G = IIO-gk/OX_ II- However, for any uniformly strained turbulent flow where Ogk/Oxt

is constant for all times, from (20) and (21) - which are a rigorous consequence of the Navier-

Stokes equations - we have

(ovk,t) (31)n!?= k

II}_) = M,j I . Ox,' (32)

since akL(t') = O-_/Oxt. Consequently, the decomposition of the model (23) into slow and

rapid parts is unclear since both II}s) and IIlJ _) can depend explicitly on the mean velocity

gradients O-gk/Oxt. The only thing that we can say definitively is that e.Aij is the slow

pressure-strain correlation in the limit of relaxational flows and that [(.AdijklOVk/OXl is the

rapid pressure-strain in the rapid distortion limit.

This analysis is particularly relevant for comparison studies of existing models for the

pressure-strain correlation. Many of these models have been calibrated in uniformly strained

turbulent flows (i.e., homogeneous shear flow). Since for such flows, both the rapid and slow

parts of the pressure-strain correlation can depend explicitly on Ogk/Oxl, the implementation

of the commonly assumed decomposition (27)-(28) to evaluate models can lead to misleading

results as we will show more clearly in the next section.

3. COMPARISONS WITH DIRECT SIMULATIONS

Three recent models for the pressure-strain correlation will be compared with the direct

simulations of Rogers, Moin and Reynolds 9 for homogeneous shear flow. These models are

as follows:

Shih-Lumley Model (SL)

Hij = -flebij + _ K-Sij + 12o_5I/(bikSjk + bjk-Sik

2 b 4 (2 -'7a5)I((b,kWjk + )--5 klSkle_ij)-- "Jc _ bjkWik

(33)
4

+-_ K ( bitbtm S jm + bjlbtm'Sirn - 2bikSktbtj

-3bktSktbij) + 5K(bitbtmWjm + bjtbtmWim)

5



where

fl = 2 + F exp(-7.77/_77t){72/ff_R-77 -k-80.1 ln[1 + 62.4(-11 + 2.3III)]}

F = l + 9II + 27III

1 1 bij bjk bki
II =--_bljbij, III=

4K 2

Rot - 9 u¢

1 ( 4_F 5as = ]-_ 1+ 5 ]

Fu, Launder and Tselepidakis Model (FLT)

= -_bkl klSO) ]

4
(bikSjk + -+-_ K Sij- + 1.2K b_k-Sik _bktSkt6ij)

4 ,.

+276.14(bi_Wj_ + bjkW, k) + -_I; (bikbk, S3,
IO

+bjkbkt-Sit -- 2blk-Skl blj -- 3bktSkl bij )

+bjkWik) + 12 (bikbktWt._bm, + bjkbklWlmbmi) ]

Speziate, Sarkar and Gatski Model (SSG)

1-Iij = -(Cl_ of- C_)blj of- C2_ (bikbkj -- l bklbkl_iJ3 )-_'- (C3 --
GI1 )I,%;

CsK(blkWjk + bjkW_k)
\ 3 /

where _ = -u-_OFi/Oxj is the turbulence production and

C1 = 3.4, C_' = 1.80, C2 = 4.2

4

C3 = g, C_ = 1.30, C4 = 1.25

6'5 = 0.40, IIb= bijbij

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)



(see Shih and Lumley, _ Fu, Launder and Tselepidakis 7 and Speziale, Sarkar and Gatski 8

for more details). In (33) and (39)-(40) S_j and W_j are, respectively, the symmetric and

antisymmetric parts of the mean velocity gradient tensor O-gi/Oxj which are given by

-_ij = -_ _,Oxj + Oxi ] (44)

1 (O-g, Ogj (45)
]

The values of the pressure-strain correlation computed in the direct simulations of Rogers,

Moin and Reynolds 9 for homogeneous shear flow will be compared with the predictions of

the SL, FLT and SSG models. Here the latter are obtained by substituting the DNS values

for bij, Ogi/Oxj, K and c into (33)-(43) where, in homogeneous shear flow, the mean velocity

gradient tensor takes the form

ozj- o o o (46)
0 0 0

given that S is the shear rate. Comparisons will be made with the DNS for t* = St > 2 which

corresponds to eot/Ko > 1. An eddy turnover time is allowed for the artificial early transient

effects to die out (the shear is turned on at time t = 0 when the turbulence consists of a

random isotropic velocity field with a square-pulse energy spectrum). Since S is constant,

this DNS constitutes a uniformly strained turbulent flow as discussed in the previous section.

In Figures l(a)-(c) the predictions of the models for the slow pressure-strain correlation -

based on the commonly assumed decomposition (27) - are compared with the DNS results of

Rogers et al. 9 for homogeneous shear flow (run C128U). From these results it would appear

that the SL model is far superior to the FLT and SSG models insofar as the modeling of slow

pressure-strain correlation is concerned. Similarly, in Figures 2(a)-(c) the predictions of the

SL, FLT and SSG models for the rapid pressure-strain correlation based on the decomposi-

tion (28) are compared with the same DNS test case. 9 Again, one is tempted to draw the

same conclusion about the superiority of the SL model in comparison to the FLT and SSG

models. However, when the model predictions for the total pressure-strain correlation are

compared with the same DNS data, a rather different picture emerges. In Figures 3(a)-(c)

the predictions of the SL, FLT and SSG models are compared with the DNS results for

the total pressure-strain. Here, the model predictions are in much closer proximity to one

another and the relative superiority of the performance of the models is less clear. The SL

model is in the closest agreement with the DNS data for IIu; the SSG model does the best

for the II12 component; and the results are mixed for the II22 component although FLT and

SL are on balance better than SSG. From these results it is impossible to judge which of



the modelshasbetter predictive capabilities. The examination of other test casesfrom this

DNS data baseis of little help. For example, the sametype of mixed results are obtained
from the C128X run of Rogers et al. 9 (see Figures 4(a)-(c)).

It is now clear that for homogeneous shear flow the direct comparison of these independent

models for the pressure-strain correlation with DNS results for Hij is not very illuminating.

Furthermore, as shown by the analysis in Section 2, since the decomposition of models for the

pressure-strain correlation into slow and rapid parts is ambiguous in homogeneous shear flow,

highly misleading conclusions can be drawn when comparisons are made exclusively based

on the decompositions. A few further comments are in order concerning the implications of

this point for turbulence modeling. It could be argued that since many of the authors who

have developed models for the pressure strain correlation have utilized the decompositions

(27)-(28) in the derivation of their models, then why is it unsound in these cases to compare

the parts of the model separately? It must be remembered that the rapid parts of these

models have usually not been calibrated separately. Namely, uniform shear flow results

have typically been used to calibrate the "rapid" part of the model after the "slow" part

was calibrated based on the return to isotropy problem. Since, in uniform shear flow, both

the slow and rapid parts of the pressure-strain correlation depend explicitly on the mean

velocity gradients as shown in (31)-(32), it follows that, when calibrated in this fashion,

the model (28) ends up accounting for both the rapid pressure-strain correlation and the

straln-dependent part of the slow pressure-strain correlation. This could explain why these

models do not perform well in the rapid distortion limit (see ReynoldslS).

While the Shih-Lumley model appears to yield slow and rapid parts that compare well

with DNS data for homogeneous shear flow as shown in Figures 1-2, this agreement is

fortuitous. For other homogeneous turbulent flows, the agreement of the individual parts of

the model is not nearly so favorable. In Figures 5(a)-(c) the components of the stow pressure-

strain correlation predicted by the SL, FLT and SSG models are compared with the DNS

data of Rogallo 2 for plane strain. It is clear from these results that none of the models

are able to yield results in close range of this DNS. Similar negative results were recently

reported by Shih et al. a for the axisymmetric expansion as well as for plane strain turbulence.

It is thus clear that this commonly adopted practice of testing the "slow" and "rapid"

parts of the pressure-strain correlation in homogeneously strained turbulent flows should be

abandoned in favor of alternative tests based on the total pressure-strain correlation. This

point led the present authors to model the total pressure-strain correlation, without using

the decompositions (27)-(28), when formulating the SSG model. Such an approach had been

proposed previously by Leslie. ]6 It must be remembered that only the total pressure-strain

correlation enters into the Reynolds stress transport equation.

I
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4. ALTERNATIVE TESTS OF PRESSURE-STRAIN MODELS USING DNS

As shown in the last section, the direct comparison of models for the pressure-strain

correlation with DNS can be either misleading or inconclusive. The only way to obtain a

more accurate gauge on the performance of pressure-strain models in homogeneously strained

turbulent flows is to compute these flows with a full second-order closure that incorporates

these models and then compare with DNS results. In this way, the ability of these models

to yield good predictions for the time evolution of the Reynolds stresses as well as the

equilibrium anisotropies can be assessed. In the final analysis, the purpose of these pressure-

strain models is to yield a full Reynolds stress closure; hence, such models should be judged

good or bad based on their ability to yield accurate predictions for the Reynolds stresses.

The Reynolds stress transport equation takes the form l°

u_uj= -uluk-_x k - ujUk_x k + II_j - e_j (47)

for homogeneous turbulence. Consequently, in order to achieve closure, a model for the

turbulent dissipation rate tensor eij is needed in addition to a model for the pressure-strain

correlation II_j. This does cause some concern since inaccurate model predictions can arise

from two sources: the pressure-strain correlation or the dissipation rate tensor, tIowever, in

virtually all of the commonly used second-order closures, the turbulent dissipation rate _ is

modeled as follows:

= -C_11_ uil£j (Oxj Ce2-K (48)

1
in homogeneous turbulence where _ -- _£ii and C_1 and Ce2 are either constants or functions

of II, III and Ret. This model - which has its origins in the work of Davidov 17 and Launder

and co-workers _s-19 - has been shown recently by Speziale and Mac Giolla Mhuiris 2° to

perform well in homogeneous shear flow. Hence, if versions of (48) that are compatible with

the SL, FLT and SSG models are chosen, a fair basis of comparison is established between

these pressure strain models. The form of tile coefficients chosen by SL, FLT and SSG are

as follows:

Shih and Lumley Model

7
C_1 = 1.2, C_2= -;+0.49exp(-2.83Re:_)[1-O.331n(1-55II)] (49)

O

Fu, Launder and Tselepidakis Model

C¢1 = 1.45, C_2 = 1.90 (50)

9



Speziale, Sarkar and Gatski Model

C_, = 1.44, C,2 = 1.83. (51)

The effect of variations of these coefficients will be discussed briefly later. Both the SL

and SSG models are used with Kolmogorov's assumption of local isotropy

2

ci = (52)

In the FLT model, a simple algebraic modcl is used to parameterize the anisotropy of dissi-

pation as follows:
2

= 5¢V/-fSij + (1 - v/-F)-[-(uiuj (53)

wherein _ is obtained from (48). This model is needed for consistency with the limit of

two-component turbulence (in more recent versions of the model of Launder and co-workers,

the anisotropic part of (53) is combined with Hij).

Now, computations of the Reynolds stresses predicted by the models will bc compared

with the DNS results of Rogers et al. ° for homogeneous shear. In Figure 6, the predictions

of the SL, FLT and SSG models for the time evolution of the turbulent kinetic energy are

compared with run C128W of the DNS ° (here, K* = K/Ko, t* = St). These results appear

to indicate that the SL model performs the best, by far. Shih et al? reported very similar

results for the SL model for run C128W of the DNS which they used to argue for the

superiority of this model. However, it becomes clear that these good results are fortuitous

when other cases are considered. In Figures 7-8, the model predictions are compared with

DNS results for runs C128U and C128X of Rogers et al. ° For these cases, none of the models

are able to predict the trends of the DNS. The reason for this is that the initial conditions

of the DNS are contaminated. More specifically at time t* -- 0 when the shear is turned

on, the flow is seeded with a random isotropic velocity field with a square pulse spectrum

(see Rogallo2). Hence it is unrealistic to expect one-point turbulence models to predict the

early time evolution of this "pseudo-turbulence" (the artificial nature of the early transient is

best illustrated by run C128X shown in Figure 8 for which the turbulence Reynolds number

drops an order of magnitude during the first eddy turnover time). At least one eddy turnover

should be allowed to elapse before making comparisons; this corresponds to

¢0t

/To> 1

or St > 2 for the initial conditions of these simulations. Hence at St = 2, the values of

uiuj and e taken from the DNS - which correspond to a more physical turbulence with a

developed energy spectrum - are now used as initial conditions for the models. With these

l0



more physical initial conditions, a different picture emerges. For the C128W run shown in

Figure 9(a) the SSG model now yields the best predictions in comparison to the DNS results.

For the C128U run shown in Figure 9(b), the FLT model performs the best; whereas for

the C128X run shown in Figure 9(c) the FLT and SSG models perform comparably well.

However, in all of these runs, the SL model performs poorly. This is due to its underprediction

of the growth rate - a result that will be shown later. By basing the calculations on the

contaminated initial conditions at St = 0, it would be erroneously concluded that the SL

model performs the best among these models in homogeneous shear flow.

Finally, we will provide a much more reliable criterion for judging the predictive capabil-

ities of pressure-strain models in homogeneous shear flow. All of these models predict that

when an initially isotropic turbulence is suddenly subjected to a mean strain then, during

the early times,
4 ,m

II_j ,_ gI_ Sij. (54)

This result was first derived by Crow21; it is a rigorous constraint that can be obtained

by simple symmetry arguments. Eq. (54) guarantees that the models will perform well for

early times. Hence, the prospect that the models will perform well at later times is tied

strongly to their ability to predict the equilibrium values (bij)_ and (SK/e)_ since these

are approached within a few eddy turnover times and achieve values that are independent

of the initial conditions - a feature that is universal in homogeneous shear flow. s° In Table

1, the equilibrium values predicted by the SL, FLT and SSG models for homogeneous shear

flow are compared with the DNS results of Rogers et al. 9 averaged over the six runs discussed

therein. Here,

is the equilibrium value of the ratio of production to dissipation and

(55)

(56)

is the equilibrium growth rate (for t* >> 1, K*,e* ,.o ea_'). It now becomes clear why the

FLT and SSG models perform more favorably compared to the DNS results of Rogers et al. 9

Both FLT and SSG yield growth rates that are in the range of the DNS; similarly the other

equilibrium values are close to the DNS results. However, the SL model yields equilibrium

values for bij and SK/e which - with the exception of (bxl)_ - compare poorly with the

DNS results as shown in Table 1. In particular, the growth rate Ao_ is underpredicted

by 20%: a result which explains why the SL model predictions are consistently below the

DNS data for the turbulent kinetic energy shown in Figures 9(a)-(c) for three independent

cases. Similar conclusions can be drawn when comparisons are made with the independent

large-eddy simulation of Bardina et al. 22 shown in Figure 10.

11



Somecommentsare in order concerning the effect of the model constants in (48) on
the performanceof the SL model. For example,could the bad predictions of the SL model

be due to problemswith the modeleddissipation rate transport equation? The answerto

this question appearsto be no. Shih (private communication) has used a variety of values
for C_1 in the range of 1 _< C_1 _< 1.25 for the calculation of homogeneous turbulent flows

(for homogeneous shear flow, Shih et al. 3 used a value of C_1 _ 1.2 which prompted us to

use the same value for the calculations presented herein). It can be shown that C,1 = 1

constitutes a bifurcation point of the e-transport equation where (SK/c)_ _ oo and the

exponential growth of K and c is replaced with an algebraic growth (see Speziale23). Hence,

a significant reduction of C,1 below 1.2 will further degrade the already bad prediction of

(SK/c)_ made by the SL model (see Table 1) and bring the model dangerously close to the

bifurcation point C_1 = 1. Larger values of C_1 alleviate the bad predictions for (S[(/e)_o

and (7_/c)_. Speziale et al. 24 computed homogeneous shear flow for the SL model using the

more traditional value of C,1 = 1.44. This calculation yields (SK/s)oo ,-_ 7 and (7_/g)_ _ 1.7

which are much better; however, it was at the expense of the growth rate A_ which drops to

0.09 - a value which would even further lower the predictions of the SL model in comparison

to the DNS results of Rogers et al2 shown in Figures 9(a)-(c). Furthermore, for C,1 > 1.4

the maximum anisotropy (bm)_ drops to only approximately one-half of the value shown in

Table 1 - a serious underprediction. 24 Hence, it is clear that there is no value of C,I which

will render good predictions for the SL model in homogeneous shear flow. Since C,1 and C_2

only enter into the prediction of the equilibrium values through the combination 2°

C,1 - i _o

(which should be approximately 1.8), only C_1 needs to be varied: It therefore follows that

it is not possible for the SL model to yield good results for homogeneous shear flow when

used in conjunction with a modeled dissipation rate transport equation of the standard form

(48).

Of course, these results raise the question as to why the SL model performs so poorly yet

appears to be so favorable in comparison to the DNS data of Rogers et al. 9 for the pressure

strain correlation (see Figures 3(a)-(c)). A possible explanation arises from Figure 3(b) for

the crucial 1-I12 component which contributes strongly to the determination of the growth

rate. 2° By the end of the simulation, the SL model predictions are diverging away from the

DNS data whereas the FLT and SSC model predictions are converging toward the DNS data.

5. CONCLUDING REMARKS

Considerable care must be exercised when DNS data bases are used to evaluate the

12



performance of turbulence models. The recent practice of comparing separately the model

predictions for the "slow" and "rapid" parts of the pressure-strain correlation with DNS

data bases for homogeneously strained turbulent flows is fundamentally unsound. This is

due to the fact that the decomposition of models for the pressure-strain correlation into

slow and rapid parts is ambiguous in such flows since both parts can depend explicitly

on the mean velocity gradients. As a result of the way in which models for the pressure-

strain correlation are calibrated, the part of the model that depends explicitly on the mean

velocity gradients is actually accounting for contributions from both the slow and rapid

terms in these flows. Consequently, when a model is decomposed into slow and rapid parts

along the traditional lines (27)-(28), highly misleading results can be obtained when separate

comparisons are made with DNS results for the slow and rapid pressure strain correlations

drawn from homogenous shear flow.

The individual slow and rapid parts of the commonly used models can only be properly

tested in the limit of relaxational flows and in the rapid distortion limit, respectively. None

of these models are consistent with DNS or RDT in the rapid distortion limit as recently

demonstrated by Reynolds 15 - a deficiency which in all likelihood arises from the neglect

of the nonlinear history effects in (20)-(21). Evidence is rapidly accumulating that models

of the commonly assumed form (23) cannot accommodate both the rapid distortion and

moderately strained flow limits. Other pitfalls can be encountered when DNS data bases

are used to test pressure-strain models in the limit of relaxational flows (i.e., the return to

isotropy problem). The DNS data bases of Lee and Reynolds 25 that are typically used are for

Reynolds numbers Re_ < 10 based on the Taylor microscale. At such low Reynolds numbers

there is virtually no return to ]sotropy - an effect that can only be captured by pressure-

strain models where the Rotta coefficient goes to2 as ReA becomes of O(1). Consequently, it

is not surprising that the SL model - which has just such a low Reynolds number correction

- performs better than the high Reynolds number SSG and FLT models in these relaxatlonal

flows as shown by Shih and Lumley. s However, when high Reynolds number experiments are

considered, a drastically different picture emerges as shown recently by Sarkar and Speziale 26

(here, the SSG model performed better than the SL model in three out of four experimental

test cases of the return to isotropy problem at higher Reynolds numbers).

In the final analysis, simplified models for the pressure-strain correlation such as (23)

are primarily useful in so far as they are able to render reliable predictions for the Reynolds

stresses within the framework of an otherwise internally consistent second-order closure. For

homogeneous turbulence this is best achieved by satisfying the Crow 21 constraint and by

calibrating the model to yield good equilibrium values for the Reynolds stress anisotropies

in benchmark cases like homogeneous shear flow (the former ensures good predictions for

13
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early times whereas the latter enhances the prospects for good predictions at later times).

The FLT and SSG models discussed in this paper perform much better than the SL model

in homogeneous shear flow since the former two models were partially calibrated based on

experimental data for this flow. On the other hand, the SL model was largely formulated

based on the satisfaction of the constraint of realizability in the limit of two-component tur-

bulence. The formulation of models exclusively by the satisfaction of an extreme constraint

- exact as it may be - may not guarantee that a model will perform well in basic benchmark

flows. Deficiencies like those uncovered in this study can be overlooked when models for the

pressure-strain correlation are compared in isolation with DNS data bases without a direct

examination of their predictive capabilities within the framework of a full Reynolds stress

closure.

14



REFERENCES

1p. Moin, W. C. Reynolds and J. Kim, eds., "Studying Turbulence Using Numerical Sim-

ulation Databases," Proceedings of the 1987 Summer Program of the Center for Turbulence

Research, Stanford University Press (1987).

_R. S. Rogallo, "Numerical Experiments in Homogeneous Turbulence," NASA Technical

Memorandum 81215 (1981).

3T. H. Shih, N. N. Mansour and J. Y. Chen, "Reynolds Stress Models of IIomogeneous

Turbulence," in Proceedings of the 1987 Summer Program of the Center for Turbulence

Research, (P. Moin et al., eds.), p. 191, Stanford University Press (1987).

4j. Weinstock and K. Shariff, "Evaluation of a Theory for Pressure-Strain Rate," in

Proceedings of the 1987 Summer Program of the Center for Turbulence Research, (P. Moin

et al., eds.), p. 213, Stanford University Press (1987).

ST. H. Shih and J. L. Lumley, "A Critical Comparison of Second-Order Closures with

Direct Numerical Simulation of Homogeneous Turbulence," NASA Technical Memorandum

105351, ICOMP, NASA Lewis Research Center (1991).

6T. H. Shih and J. L. Lumley, "Modeling of Pressure Correlation Terms in Reynolds

Stress and Scalar Flux Equations," Cornell University Technical Report FDA-85-3 (1985).

rS. Fu, B. E. Launder and D. P. Tselepidakis, "Accommodating the Effects of High Strain

Rates in Modeling the Pressure-Strain Correlation," UMIST Technical Report TFD/87/5

(1987).

sC. G. Speziale, S. Sarkar and T. B. Gatski, "Modeling the Pressure-Strain Correlation of

Turbulence: An Invariant Dynamical Systems Approach," J. Fluid Mech. 227, 245 (1991).

9M. M. Rogers, P. Moin and W. C. Reynolds, "The Structure and Modeling of the

Hydrodynamic and Passive Scalar Fields in Homogeneous Turbulent Shear Flow," Stanford

University Technical Report TF-25 (1986).

loj. O. Hinze, Turbulence (McGraw-Hill, New York, 1975).

11M. Lesieur, Turbulence in Fluids (Martinus Nijhoff, Boston, 1990).

12W. C. Reynolds, "Fundamentals of Turbulence for Turbulence Modeling and Simula-

tion," Lecture Notes for Von Kdrmdn Institute, AGARD Report No. 755 (NATO, Specialized

Printing Services, Loughton, Essex, 1987).

15



13j. L. Lumley, "Computational Modeling of Turbulent Flows," Adv. Appl. Mech. 18,

123 (1978).

14C. G. Speziale, "Analytical Methods for the Development of Reynolds Stress Closures

in Turbulence," Ann. Rev. Fluid Mech. 23, 107 (1991).

15W. C. Reynolds, "Effects of Rotation on Homogeneous Turbulence," Proc. lOth Aus-

tralasian Fluid Mech. Conf., University of Melbourne, pp. 1-6 (1989).

16D. C. Leslie, "Analysis of a Strongly Sheared, Nearly Homogeneous Turbulent Shear

Flow," J. Fluid Mech. 98, 435 (1980).

I_B. I. Davidov, "Statistical Dynamics of an Incompressible Turbulent Fluid," Dokt. Akad

Nauk SSSR 136, 47 (1961).

lSK. Hanjalic and B. E. Launder, "A Reynolds Stress Model of Turbulence and its Ap-

plication to Thin Shear Flows," J. Fluid Mech. 52,609 (1972).

19B. E. Launder and D. B. Spalding, "The Numerical Computation of Turbulent Flows,"

Cornput. Methods Appl. Mech. Eng. 3, 269 (1974).

_°C. G. Speziale and N. Mac Giolla Mhuiris, "On the Prediction of Equilibrium States

in Homogeneous Turbulence," J. Fluid Mech. 209, 591 (1989).

21S. C. Crow, "Viscoelastic Properties of Fine-Grained Incompressible Turbulence," J.

Fluid Mech. 33, 1 (1968).

22j. Bardina, J. H. Ferziger and W. C. Reynolds, "Improved Turbulence Models Based

on Large-Eddy Simulation of Homogeneous Incompressible Turbulent Flows," Stanford Uni-

versity Technical Report TF-19 (1983).

2aC. G. Speziale, "Discussion of Turbulence Modeling: Present and Future," Proc. Whither

Turbulence Workshop, Lecture Notes in Phys. 357 (J. L. Lumley, ed.), p. 490 (1990).

24C. G. Speziale, T. B. Gatski and N. Mac Giolla Mhuiris, "A Critical Comparison of

Turbulence Models for Homogeneous Turbulent Shear Flows in a Rotating Frame," Phys.

Fluids A 2, 1678 (1990).

_SM. J. Lee and W. C. Reynolds, "Numerical Experiments on the Structure of Homoge-

neous Turbulence," Stanford University Technical Report TF-2_ (1985).

26S. Sarkar and C. G. Speziale, "A Simple Nonlinear Model for the Return to Isotropy

in Turbulence," Phys. Fluids A 2, 84 (1990).

16

m



APPENDIX A

The equation of motion (11) for the fluctuating velocity can be rewritten in the alternative

form

Oui Oui _ Oui
Ot uV2ul = --uj-- -- GjkXk ------- -- Gijuj

Oxj Oxj

(A1)

for any homogeneous turbulent flow. By making use of the Green's function for the diffusion

operator, (A1) can be converted to the equivalent form

ioi7I r ,o,,: 0<_,(x,0 - i , _(x- x',t t') [ a_

O0 lie I It #

x_ - zi , Oul (t )

--OO

+ Ox 7 Ox_ d3x* dax'dt'

(A2)

oO

+5iil,,(xx,,).,:x,
--,DO

where

1 exp [-ix- xtl2/4u(t --t')] (A3)H(x - x',t- t') = 2,/_(_ - t')_

is the Green's function which is non-zero only for t - t' > 0. For an ensemble of initial

conditions u_(x, 0), one could envision solving (A2) iteratively. These solutions would be of

the general mathematical form

ui(x,t) = $'i[akt(t');x,t], t' e (O,t) (A4)

where 9vi[ • ] denotes a functional in the history of the mean velocity gradient tensor Gin.

Consequently, the fluctuating velocity - as well as any statistics constructed from it - will

depend nonlinearly on the history of the mean velocity gradients. On physical grounds, the

duration of this history dependence would be expected to be of the order of an eddy turnover

time.
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Equilibrium
Values

(b11)o¢

(b12)_

(b22)_

(b33)c_

SL

Model

0.202

-0.081

-0.195

-0.007

FLT

Model

0.208

-0.146

-0.144

-0.064

SSG
Model

0.204

-0.156

-0.148

-0.056

DNS

Results

0.215

-0.158

-0.153

-0.062

21.3

3.43

0.114

6.84

2.00

0.146

5.98

1.87

0.145

5.70

1.80

0.14

Table 1. Comparison of the equilibrium values predicted by the SL, FLT and SSG models

with the DNS results of Rogers et al. 9 for homogeneous shear flow.
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flow (run C128U). (a) IIll component, (b) II12 component, and (c) II22 component.
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